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We present a history-dependent Monte Carlo scheme for the efficient calculation of the free energy of
quantum systems inspired by Wang-Landau and metadynamics. In the two-dimensional quantum Ising model,
chosen here for illustration, the accuracy of free energy, critical temperature, and specific heat is demonstrated
as a function of simulation time and successfully compared with the best available approaches. The approach
is based on a path integral formulation of the quantum problem and can be applied without modifications to
quantum Hamiltonians of any level of complexity. The combination of high accuracy and performance with a
much broader applicability is a major advance with respect to other available methods.
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Calculating certain thermodynamical quantities, such as
the free energy �FE� or the entropy, by Monte Carlo �MC�
simulation is a notoriously difficult problem. The difficulty
arises because standard MC �1� is devised so as to generate
configurations X distributed according to their Boltzmann
weight PX=e−�EX /Z, where EX is the energy of the configu-
ration X and Z=�Xe−�EX is the partition function. This is
efficient if we are interested in calculating quantities such as
the average energy �E�=�XEXPX since the configurations
generated by MC are just those that contribute significantly
to the average. Calculating, however, the free energy F
=−�−1 log�Z� requires a knowledge of the partition function
Z which is not accurately given by the simulation.

A major step forward, in this respect, came with the
Wang-Landau �WL� idea �2�. In a nutshell, since

Z = �
X

e−�EX =� dEg�E�e−�E, �1�

where g�E�=�X��E−EX� is the density of states with energy
E, if we devise a MC that generates configurations distrib-
uted according to 1 /g�EX�, then we will effectively recon-
struct the full histogram for g�E� in a single simulation. This
allows computing the partition function Z and hence all ther-
modynamical quantities at any temperature T=1 /kB�, where
kB is the Boltzmann constant. This is particularly useful if the
system can undergo a first-order phase transition. Indeed,
using the WL approach, the system can diffuse over barriers
between different local minima following pathways that
would represent, in normal finite-T MC, “rare events.”

This discussion applies to classical systems; how should
one proceed for a quantum system �3�? Consider, to fix ideas,
the transverse-field quantum Ising model �QIM�,

ĤQIM = − J�
�ij�

N

�̂i
z�̂ j

z − h�
i

N

�̂i
z − ��

i

N

�̂i
x, �2�

where �̂i
z and �̂i

x are the Pauli matrices, J�0 is an exchange
constant, h and � are the longitudinal and transverse mag-
netic fields, respectively, and �ij� denotes nearest neighbors

on a lattice of N sites. The partition sum ZQIM

=�X�X	e−�Ĥ	X�, where X= 
�i=1,. . .,N� is a configuration of all

N spins, involves now a matrix element of e−�Ĥ. The first
step toward rewriting it in a form similar to Eq. �1� consists
in performing a Suzuki-Trotter decomposition �4� leading to

a path-integral expression ZQIM��X̄e−�A�X̄�. Effectively, we
have a classical system with an extra time dimension, whose

configurations X̄, over which we sum, are given by X̄
= 
�i=1,. . .,N;p=1,. . .,P�. The extra index p labels the P Trotter
slices in the time direction �5�. In the QIM case, the action A
reads as

A�X̄� = NJUX̄ + J�KX̄ − hMX̄ −
P

�
ln C� , �3�

where UX̄=−�NP�−1�p��ij��i,p� j,p is the classical interaction
energy per spin, KX̄=−�NP�−1�i,p�i,p�i,p+1 is the quantum
“kinetic energy” per spin, MX̄= �NP�−1�i,p�i,p is the magne-
tization per spin, J�=−�P /2��ln�tanh��� / P���0 is the fer-
romagnetic coupling between adjacent spins in the time-
direction, and C2= �1 /2�sinh�2�� / P�. By introducing a
multidimensional density of states g�U ,K ,M�=�X̄��U
−UX̄���K−KX̄���M−MX̄� we can easily rewrite the following:

ZQIM �� dUdKdMg�U,K,M�e−�A�U,K,M�

=� dUdKdMe−�F�U,K,M�, �4�

where A�U ,K ,M�=N�JU+J�K−hM − �P /��ln C� and
F�U ,K ,M� defines the FE as a function of �U ,K ,M�. For
h=0 the relevant coordinates are two, U and K. Using the
WL idea to reconstruct ZQIM for all values of � and �
requires now sampling a two-dimensional density of
states histogram g�U ,K� in terms of which ZQIM

��dUdKg�U ,K�e−�N�JU+J�K�. This approach is, however, not
very efficient �see below�.

A much more convenient �“state-of-the-art”� route is
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based on the so-called stochastic series expansion �SSE�
�6,7� and involves using a WL approach to reconstruct the
coefficients g�n�=Tr�−Ĥ�n of a high-temperature expansion
of the partition function Z=�n��n /n!�g�n� �8�. The SSE ap-
proach is particularly suited to treat quantum spin systems
and other lattice quantum problems but is in general not
straightforward, for instance, for quantum problems on the
continuum.

We propose here a method to effectively calculate the FE
of a quantum system. Our approach is based only on a path-
integral formulation. Thus, it can be easily applied to com-
plicated off-lattice quantum problems. This is a major advan-
tage with respect to SSE. The crucial ingredients were
borrowed from the WL method and the metadynamics ap-
proach, a method which proved useful for exploring the FE
landscape of complex classical systems �9� as a function of
many collective variables �CVs� S= �S1 , . . . ,Sd�.

In metadynamics, sampling is enhanced by introducing a
history-dependent potential VG�S , t�, defined as a sum of
Gaussians centered along the “walk” in CV-space that in
time “flattens” the FE histogram as a function of the
CVs:VG�S , t→���−F�S� �10�. This approach has been
mainly used within molecular dynamics. During the simula-
tion the system is guided by the action of two forces: the
thermodynamic one, which move it toward the local FE
minimum, and that due to the history-dependent potential,
which pushes it away from local minima.

We show here how to integrate metadynamics in a MC
procedure, in particular in a path-integral MC �PIMC�, to
sample the FE landscape of quantum systems as a function
of physically relevant CVs. Again, we illustrate this ap-
proach in the quantum Ising model where we reconstruct the
FE as a function of three CVs, the magnetization M, the
potential energy U, and the kinetic energy K. As we will
show, a calculation performed at a single point �� ,� ,h� in
parameter space is sufficient to obtain the FE in a whole
neighborhood of that point. The method is tested by compar-
ing its efficiency against the state-of-the-art WL-SSE method
�8� or a WL over a standard PIMC �3�: we show that our
approach is at least as good as the WL-SSE on a lattice
quantum problem, as well as being physically transparent
and easily generalizable to different models.

Given the classical-like path-integral expression for the

partition function of our quantum model, Z��X̄e−�A�X̄�, we

first define a small number d of CVs Sl�X̄�, l=1, . . . ,d, which

appear in the action A�X̄�=A�S�X̄��: in the QIM case there
are d=3 physically meaningful CVs, the potential energy
S1=U, the kinetic energy S2=K, and the magnetization S3
=M, in terms of which the action is A�S�=N�JU+J�K
−hM − �P /��ln C�. Next, we perform a Metropolis walk in

configuration space 
X̄� in which the transition probability

from X̄ to X̄� is modified adding to the action a history-

dependent potential VG�S�X̄� , t�:

P�X̄ → X̄�,t� � min
1,e−���A+�VG�t��� , �5�

where �A=A�X̄��−A�X̄� is the change in action and

�VG�t�=VG�S�X̄�� , t�−VG�S�X̄� , t�. Whether or not a move is

accepted, we update VG by adding to it a small localized
repulsive potential �a Gaussian in normal metadynamics �9��.
Technically, this is best done by grid-discretizing the CV-
space and keeping track of VG�S�k� , t� only at grid points S�k�;

the value of VG at a generic point S�X̄� is then calculated by
a linear interpolation L from the neighboring grid values:

VG�S�X̄� , t�=L�VG�S�k� , t��, where L�¯ � is the linear inter-
polation function, and S�k�, k=1, . . . ,2d, are the points of the

grid nearest-neighbors of S�X̄�. In this scheme, the potential
VG is updated on the neighboring grid points S�k� as

VG�S�k�,t + 1� = VG�S�k�,t� + w�
l=1

d �Sl
�k� − Sl�X̄�

	Sl

 1� ,

�6�

where the �+� sign is used if Sl
�k��Sl�X̄� and the �−� sign

otherwise, 	Sl is the spacing of the grid in the Sl direction
and w is a parameter that determines the speed of the FE
reconstruction. Therefore, similarly to in WL, the acceptance
changes every time a move is accepted or rejected, and the
walk in configuration space is intrinsically non-Markovian �it
depends on the history�. At the beginning of the simulation
the potential VG�S�k� , t=0�, stored on the grid, is set to zero.
Then, as the system moves in configuration space, VG is
updated at each move as in Eq. �6�. After a sufficient time,
VG will approximately compensate the underlying FE profile
�10�. A further improvement can be obtained by taking as
estimator of the FE not just a single profile VG, but the arith-
metic average of all the profiles between a “filling” time tF
and the total simulation time ttot:

F�S� � −
1

ttot − tF
�

tF

ttot

dtVG�S,t� . �7�

This reduces the error of the method, which drops fast to
zero for large ttot− tF �9�. Convergence problems can occur if
an important CV is not included in the bias �9�.

When F�U ,K ,M� for a given value of the external param-
eters �� ,� ,h� is known, one can readily recalculate the new
FE profile for a whole neighborhood in parameter space. The
equations for this extrapolation can be written as

F�U,K,M��� =
�

��
�F�U,K,M�� − N�JU + J�

�K − hM��

+ N�JU + J��
� K − hM� +

NP

��
ln C���

C����
� ,

�8�

F�U,K,M��� = F�U,K,M�� + N�J��
� − J�

��K +
NP

�
ln C���

C����
� ,

�9�

F�U,K,M�h� = F�U,K,M�h − N�h� − h�M . �10�

By logarithmic integration of F�U ,K ,M� with respect to one
or more variables we immediately get the free energy as a
function of a reduced number of CVs. For instance,
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F�M� = −
1

�
ln� dUdKe−�F�M,U,K�� . �11�

Figure 1 shows F�M� for the QIM on a 8�8 lattice �N=64
spins�, with P=30 Trotter slices at two different points in
parameter space. The agreement between the reference F�M�
and that calculated from F�U ,K ,M� is good even if we ex-
trapolate the F�U ,K ,M� from the ordered to the disordered
side �or vice versa� of the phase transition line. Thus, with a
single calculation of F�U ,K ,M� at a point �T ,� ,h� in param-
eter space, we can get reliable information for F�U ,K ,M� in
a whole neighborhood of that point �see inset�. An appropri-
ate reference �T ,� ,h� can be easily chosen by a preliminary
estimate on a smaller system or by an approximate calcula-
tion.

In order to test the efficiency of the proposed method we
compare it with a SSE-WL simulation �7,8�, as well as with
a direct application of WL to PIMC in which the two-
dimensional g�U ,K� is calculated. For the same system of
Fig. 1 we estimate Tc �conventionally defined as the tempera-
ture at which the specific heat reaches its maximum value� as
a function of the MC time with the three methods. The re-
sults are shown in Fig. 2. As a reference, we also computed
Tc by a very long PIMC calculation �red line with error bars
in the figure�. In the SSE+WL calculation the histogram is
considered flat when for all the values of n the histogram is
larger than 95% of its average �12� �the limit of 80% sug-
gested in Ref. �2� leads, for this specific system, to system-
atic errors, data not shown�. Instead, for PIMC-WL the 80%
limit is sufficient to reach convergence. The specific heat for
our method was calculated computing a F�U ,K� at kBT /J
=1.8 and � /J=2.0, h /J=0.0 and extrapolating in tempera-
ture according to Eq. �8�. The grid spacing in the U and K
directions was of 10 and 1 energy levels, respectively. How-
ever we needed a finer grid spacing of 1 also for U for states

too close to the parameter boundary values −2U2,
where systematic errors may otherwise arise.

In order to extrapolate the FE in a meaningful temperature
interval 	T� 
J /kB including the peak of the specific heat,
it is necessary to obtain quickly a large maximum value of
VG�80kBT /J for the system considered here. This is accom-
plished by starting the simulation with w=8�10−3 decreas-
ing it up to 10−4 in 2�106 MC steps �tF in Eq. �7��, then w
is not changed anymore, and the free energy is estimated
using Eq. �7�. It is clear from the previous discussion that the
optimal filling protocol is system dependent.

As shown in Fig. 2, using our approach we can obtain Tc
within the PIMC error bar, with an efficiency similar to the
SSE+WL algorithm. The PIMC+WL method is by compari-
son an order of magnitude slower �Fig. 2, inset�. Of course,
the efficiency of the approach presented here is strongly in-
fluenced by the temperature where the reconstruction is per-
formed, which should not be too far from Tc ��10% smaller
in the example considered here�. However, Tc can always be
estimated approximately, e.g., by performing a preliminary
calculation on a system of smaller size.

Figure 3 shows the specific heat as a function of T for a
larger system, N=32�32, with P=100 Trotter slices, calcu-
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FIG. 2. �Color online� Critical temperature for a 8�8 QIM, as a
function of the MC time, calculated using three different methods:
SSE-WL �solid circles�, our method �solid squared�, and the
PIMC-WL algorithm �inset�. The reference �red line with error bars�
is obtained by a long PIMC simulation.
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FIG. 3. Specific heat as a function of the temperature for the
32�32 QIM using two different methods, the PIMC technique
�solid circles�, and the proposed method �solid squares�. The inset
shows how the estimate of Tc evolves as a function of the MC time
using the present scheme.
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FIG. 1. �Color online� Free-energy profile for the 8�8 QIM as
a function of the magnetization for two different parameter values.
The results at �kBT=1.86, �=2.0, h=0� �in units of J� are ob-
tained by first calculating F�U ,K ,M� and then performing a loga-
rithmic integration �Eq. �11�� to calculate F�M�. The results at
�kBT=2.2, �=2.2, h=0.02� are instead obtained by extrapolating
the previous F�U ,K ,M� using Eqs. �8�–�10� and then integrating to
obtain F�M�. As a reference for the comparison we use the results
of an accurate umbrella sampling calculation �11� �solid line�. The
inset shows the phase diagram of the model and the circle suggests
the size of the extrapolation region.
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lated with PIMC and with the present method. Also in this
case we computed F�U ,K� and extrapolated in temperature
according to Eq. �8�, with a grid spacing of 150 and 10
energy levels in U and K directions, respectively �no need to
reduce the grid spacing near the parameter boundaries since
the free energy is very high there�. In this case w was de-
creased from 10−1 to 5�10−3 in 1.1�106 MC steps. After
this time the free energy is estimated using Eq. �7�. As shown
in Fig. 3, our approach reproduces the specific heat accu-
rately between 1 and 3kBT /J. In the inset we show how Tc
converges as a function of the MC time. Even for this much
larger 32�32 system the convergence of Tc needs roughly
the same order of magnitude of MC steps of those needed for
the small 8�8 system: thus, the computational cost grows
only linearly with the system size.

In conclusion, we have introduced an efficient history-
dependent Monte Carlo scheme that allows the accurate cal-
culation of the free-energy landscape of quantum systems.
The proposed approach was tested on a two-dimensional

quantum Ising model, where we reconstruct the free energy
as a function of two and three collective variables. This al-
lows reproducing the thermodynamic properties in a whole
neighborhood of the point in parameter space at which the
calculation is performed. The number of MC steps that are
necessary to estimate Tc in a relatively large system �32
�32�100� is of the same order as that required in a small
system �8�8�30�. The efficiency in estimating Tc is simi-
lar to that of SSE+WL, the state-of-the-art approach. Based
on path-integral MC, our method can however be directly
applied to continuous off-lattice quantum problems, where
SSE would be harder to implement. The combination of op-
timal performance and a broader applicability is a major ad-
vance with respect to other available methods.
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